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The problem is considered of the resolution of a discontinuity in mag- 
netohydrodynamics with a magnetic field perpendicular to the plane of 
the discontinuity. The parameters of the medium on both sides of the dis- 
continuity are arbitrary. Altogether twenty different cases of resolu- 
tion are possible. This paper shors which of the possible cases of resoln- 
tion. can be realized as a functioh of the values of the initial para- 
meters of the medium. 

The resolution of an arbitrary discontinuity in gasdynamics was con- 
sidered in [l-41. The resolution of an arbitrary discontinuity in 
magnetohydrodynamics without limitation on the parameters of the medium 
and the magnetic field was considered in f5-71. Certain special cases of 
the problem were investigated in 18-131. 

The present paper investigates the case of resolution of an arbitrary 
discontinuity in magnetohydrodynamics when the magnetic field is normal 
to the plane of the discontinuity, but the remaining quantities on both 
sides of the discontinuity are arbitrary. It is very complicated to ob- 
tain the solution of this problem as a limiting case of the problem of 
the resolution of a discontinuity in an arbitrary field as the tangential 
components of the magnetic field on both sides of the discontinuity tend 
to zero. The difficulty of such a limiting process is clearly evident 
even in the solution of the piston problem in magnetohydrodynamics c141. 
rhere for the tangential component of the magnetic field in the undis- 
turbed medium to vanish, three limiting cases are possible, depending 
upon the value of P = 4ry p /iI,’ in the undisturbed medium 1151. 

The problem of resolution is established in the following form. At 
the instant t = 0 let the thermodynamic parameters of the medium, the 
velocity, and the normal magnetic field undergo a discontinuity across 
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the plane x = 0. Because the conservation laws are not satisfied at such 
a discontinuity, it will be resolved into some combination of waves. On 
each side two waves may go out, separated by contact discontinuities. 
There will be no vorticity discontlnuities. For a vort icity dlscont inuity 
can exist only behind a shock wave that switches on the field. But this 
is impossible, because the speed of propagation of such a wave with re- 
spect to the gas behind it is just equal to the Alfven speed calculated 
from the parameters behind the wave. 

If it is supposed that every possible wave may exist, then altogether 
twenty different cases of resolution of a discontinuity are possible, de- 
pending upon the properties of the medium on the left and right of the 
discontinuity. The purpose of the investigation is to determine methods 
for indicating which of the possible types of resolution exists in each 
concrete case. The present paper proposes a method of solving this prob- 
lem, which consists in the construction of a diagram in the plane of 
Au = u,, - no’ and Av = vu - vO’ by means of which, knowing hu and Av, it 

is possible to determine the combination of waves by which an initial 
discontinuity will be resolved. 

The medium is assumed ideally conducting. It is also assumed that the 
solution of the problem under consideration is unique. 

Parameters of the medium to the left (right) of the initial discon- 
tinuity at t = 0 will be denoted by the index O(0’). Parameters of the 
medium to the right of the contact discontinuity for t > 0 will be 
written with a prime, 

The symbols S+, S-, IX+, IL-, K will indicate respectively the fast and 
slow shock rave. fast and slow expansion waves, and contact discontinuity. 
The subscript g indicates that the rave is a gasdynamic one; the Index v 
denotes a shock wave that switches on the tangential component of the 
magnetic field. 

Depending upon the values of the quantities PO and P,’ there may be 

six cases. 

1. Consider P, > 1, P,’ > 1. In the Ph plane the components 0, 0’ 

correspond to the points P,,, P,,’ of the axis of abscissae in Fig. 1. 
. 

In [5] it was shown that to combinations consisting of two shock or 

self-similar waves and a contact discontinuity there corresponds a point 

in the plane of Au = II,, - u,,’ and Au = vu - vu’; to combinations con- 

sisting of three shock or self-similar waves and a contact discontinuity 
there correspond lines in the AuAv plane, these being the boundaries 
of regions that correspond to combinations consisting of four shock or 
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self-similar waves and a contact discontinuity. 

The relations satisfied on a contact discontinuity are [16] 

[p] =0, /HI -0, [b] -0 

From the first equality it follows that in moving along those lines 

out of the points P,, P,’ which correspond to the relationships between 

P and h appropriate to S+-, S-, I?-, and R--waves, into which the 

original discontinuity is resolved, it is possible to arrive at one and 
the same point in the Ph plane. Henceforth, by studying along which lines 
out of the points P,, P,’ it is possible to arrive at the same point in 

the Ph plane, we find out by which combinations it is possible to resolve 
the original discontinuity. Then a diagram is constructed in the huh v 

plane by means of which, it is possible to determine the combination of 

waves into which the original discontinuity is resolved. The diagram cor- 

responding to case 1 is constructed in Fig. 2. 

Fig. 1. Fig. 2. 

In Fig. 1 it is evident that from two shock or self-similar waves 

and a contact discoqtinuity it is possible to form RRRb(RiR-KRp+b)-, 

I$""',-, and StKSt-combinations. Furthermore, in the case un er con- 

sideration 
8.8 

d 

the discontinuity may be resolved into one $-wave going to 

the right and a contact discontinuity, or into one Rz-wave going to the 

left and a contact discontinuity. All these combinations are represented 

by corresponding points on the Au axis in the AuAv plane, because in 

Sg- and Rg-waves Au = 0. Making the assumption of uniqueness of the 

solution, it is possible to assert that resolution into each of these 

combinations can be achieved if the Au and Au of the discontinuity fall 

on these points of the AuAv plane. 

Henceforth, instead of "the region (line, point) that corresponds to 

the R$R-KR-Si (R-KR-S$, R-KS:)-combination," we will write "the 
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R;R-KR-S; (R-KR-St g, R- KS:) -region (line, point) ,” and so on. 

We consider combinations of three shock or self-similar waves and a 
contact discontinuity. An St- wave may go to the right (from P,’ to P, in 
Fig. l), behind which follo& an R--wave that switches on the field; an 

R--wave goes to the left, of the same intensity as that to the right. As 

a result we have the R-KR-St-combination. In the Ph plane R--waves are 
represented by R--lines goin: out of the point P,. This combination of 
three waves corresponds in the AuAv plane to a line going out of the 
point that corresponds to the KS+-combination. Moving along this line 
the intensity of the St-wave is c&stant, but the intensity of the R-- 
wave changes from zerog(point KS+) to a maximum (the point of the vacuum 
line, indicated by cross-hatching’in Fig. 2). 

f 

0 

/ 

Another combination of three shocks: an Rt-wave 
* goes to the left (from point PO to point P, , ‘g Fig. 

l), behind which follows an R -wave, separated by 

0’ 
a contact discontinuity from an R--wave of the 
same intensity propagating to the right. Ihis 
R+p- K R- -combination corresponds in the AuAvplane 
to a line going out of the point RtR (at which 
point the intensity of the R--wave is equal to 
zero) and proceeding to the vacuum line. 

Points of the vacuum line, and also points ly- 
ing to the left of the vacuum line, correspond to 
cases of resolution of an arbitrary discontinuity 

into a combination of waves including an K-wave of maximum intensity, 
after whose passage a vacuum is formed. 

‘lhe line R-KR-Si separates the regions corresponding to the 

S+R- K R-S;- and RiR- K R-$-combinations. The line R+R- KR- separates the 

regions corresponding to the RiR-KR-Si- and RiR-KR-Ri-combinations, 

‘Ihe figures in the Aubv plane are synzaetric with respect to the Au 
axis, which follows from the vanishing of the tangential components. of 
the magnetic field ahead of the S’p, R’p- and R--waves. 

For definiteness we show in the example of the line corresponding to 
the R’ - p KR--combination how the equation of the line in the AuAvplane 
can be written down. 

Thus let the resolution be accomplished by the RiR-KR--combination. 
The resolution scheme is depicted in Fig. 3. From Kquations (1.4), (1.5), 

(2.2), and (2.3) of [51 it follows that 
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Hence 

242 = Ul + x_ = uo + x+ + x_ = u1’ = uo’ - x-’ 

2)2=Ult~_=Vgt~_=vl’=vo’~1C?_’ 

AU = -~+-x_--x-‘7 AV = T$._T’+S- 

‘obese equations describe the line corresponding to the R’R-KR--corn- 
bination. Moving along this line x+ is constant, but the quantities x_, 

x-‘, +_ and L’ change from zero to certain maximum values. ‘Ibe equations 
of the other lines, including the vacuum line, are found analogously. 
(See also 151 in this connection.) 

2. Consider PO > 1, P,,’ = 1. In this case the diagram in the Au A v 
plane is easily obtained from Fig. 2. 

‘Ihe RF-KR--1 ine disappears (it coincides with a portion of the Au 
axis), because an A-wave propagating into gas where P Q 1 and h = 0 de- 

generates into an Ri-wave,-which cor- 
responds in the Ph plane 1151 to the hl 
segment of the P axis from P = 1 to 
P = 0; in such a wave the quantity hv 
is equal to zero. There remains one 
R’- K R-S+-line, separating the 

-g+ RF- KR S - and SF- KR-S+6-regions, 
g. 

P 
and exten ing from the Au axis to the 

4 
m / 

I 
vacuum line. P, 3 

Fig. 4. 

3. Consider PO > 1, P,’ < 1 (Figs. 
4 and 6 for the Ph plane and Figs. 5 
and 7 for the Auhu plane). Now an R-wave cannot be propagated to the 

right, because P,’ < 1 and h,’ = 0, but an S:Lshock wave can be propa- 
gated, which turns on the tangential component of the magnetic field 18, 
15,171. ‘Ihe relation between P and h in an S:-wave is given by the equa- 

tion !%I 
1 

h2=2q(1-~+q-Po), q=po 
r--i I[ I+ 2(r---1) p--o 

PO2 1 z _-j 
T 1 

and is depicted in Figs. 4 and 6. Here P, is the value of P on the SL- 

wave for Which li, behind it is equal to zero. 

It can be shown that 
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An R--wave can be propagated to the left. 

a) Consider for definiteness P, < P,. 'lben from two shock and self- 

similar waves it is possible 

to form the R-KS:-, KS-S:-, 

S'BKS;-, RgKRg-, and RgKSg- 

combinations of Fig. 4. 

Here the symbols Sg and RR 

without the + or - sign 

always indicate gasdynamic 

shock waves and rarefaction 

waves which may, generally 

speaking, be either fast or 

slow. The last four combina- 
Fig. 5. tions correspond to portions 

of the Au axis. lhis fact is 

obvious for the last three 

combinations. We show that it is true fm the KS-S:-combination. 

'lhus for such a combination [53 

Av =-+cp+'Ifcp_' 

In this combination the S-wave has maximum intensity, that is H, = 0 
behind it; consequently from (2.2) of [51 B 

but behind the S:-wave, switching on the field 

cp,' = hl'V,' 

Therefore Au = 0 for the KS-S:-combination. 

From points of the AuAv plane that represent the R-KS:-combination 

may come lines corresponding to the following combinations, consisting 

of three shock or self-similar waves and a contact surface (Fig. 5). 

1. The R-KR-S:-combination. The line corresponding to it ends on the 

vacuum line, where in the Ph plane the R--line coming out of the point 

PrJ intersects the h, axis. 

2. 'Ihe R-KS-S:-combination. 'lhe line corresponding to it ends on the 

Au axis at the point corresponding to the KS'Sv (KSg)-combination. 
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Ilere the intensity of the R--wave is equal to zero, and the S-line be- 

ginning at the S:-line goes to the point P,. 

h’ 

Fig. 6. 

3. The RF- K SL;combination. In 

the Ph plane the line corresponding 

to the R+-wave is the section of the 

straightgline coinciding with the P 
axis to the left from the point P, 
to P = 1. At points of this segment 

A-lines can begin, going to inter- 

section with the S:-lines. ‘Ihe 

smaller P is ahead of the R--wave, 

the smaller are H, and Au in the 

wave. An R--line corresponding to 

an R--wave propagating into gas with 

P Q 1 and h = 0 degenerates into the portion of the P axis from P = 1 to 

P = 0. An R+-wave behind which P becomes less than unity goes continuous- 

ly into an ‘Ri-wave 1151. 

A line corresp,onding to an R+R-KS+-combination ends at a point lying 

on the Au axis that correspond: to a,” Rp-K-combination. 

4. The S+R-KS+-combination. Ihe line corresponding to it ends at a 

point lyinggon the” Au axis that corresponds to an S+KSi-combination. 

Moving along this line the intensity of the R--wave d ecreases to zero. 

We note that to a point of the Au axis that corresponds to a KS-S:- 

combination there corresponds also a KSg-combination, and to the 

portion of the Au axis that represents an SiKS-S:-combination there 

corresponds also an SiKSg-combination. 

From the point SiKSi goes out a line (shown dashed in Fig. 5) that 

separates the SiR- KR-S:- and SiR- KR-?-regions. \Ve note that P > P, 
behind the Si-wave moving to the left t f: at enters into the last combina- 

tion. 

In the case under consideration (H,, = 0, P,’ < l), to the left may 

go a non-evolutionary Sg-wave or an R-Si-combination including a non- 

evolutionary Sg-wave [18,19] (cf. also [15] ), behind which P < P,; this 

leads to non-uniqueness in the Auhv plane: in this case to one and the 

same point Auhv may.correspond two combinations, for example: 

RiR-KS-S: and RiR-KAS;; SiKS-Si and SiKSg; KS-S: andKSg. 

However, this indeterminacy is easily eliminated. Thus for arbitrarily 

small HTO’ f 0 there cannot be an Sg-wave going to the right, and 
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consequently there cannot be a co~ination containing a non-evolutionary 

Sg-wave that spoils the determinacy. 

b) f', > P, (Fig. 6 for the Ph plane, Fig. 7 for the .Au.~v plane). 

In this case there cannot be an R-KS:-combination. From three shock 

or self-similar wave and a contact discontinuity can be formed the 

RF-KS+ and R-KR-Si- 

combinations (Fig. 6). 

lhe first combination cor- 

responds in the AuAv 

plane to a line going 

from the point R8 to the 

point RiKSi and separat- 

ing the RiR-KR-S:- and 

R'R-KS-St-regions; the 

s&ond toWa line going 

from the point KS+ and 

separating the R’R- KR-Si- 

and SiR-KRSL-regions. 

Fig.. 7. 

In Fig. 7 the line separating the RiR-KR-Si- and R+J?-KR-Sz-regions 

is shown dashed. 

On this line the intensity of the S'g- and $-waves is constant, and 

equal and vary from 0 to a certain the intensities of the R--waves are 

finite value. 

4. Consider PO < 1, P,' < 1 and, 

Fig. 8. 

line in the hudv plane. 

as before, P, > P,’ (Fig. 8 for the 

Ph plane and Fig. 9 for the duhv 

plane). 

We consider the case when the S:- 

line going out of the point Pa does 

not intersect the $-line going out 

of point P,“. The following combina- 
tions of three shock or self-similar 

waves and a contact discontinuity 

are possible, which correspond to a 

1. The SLR-KS:-combination. It corresponds to a line beginning at a 

point on the Au axis which represents an R-f- 

goes over continuously into the line corresponding to the S 

bination. In the Ph plane the R--line, corresponding to the 
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appearing in this combination, does not then end on the S:-line but on 

the S;-line. lhe SiR-Kg--line ends at a point corresponding to the 

SiKSi-combination. The SZR-KS:-line separates the S~R-KRS~- and 

S:R_KSSt-regions; the St - p KS:-line separates the Stp-KR-S:- and 

SiR-KS-S:-regions. 

2. 'Ihe SZKS-S:-combination. It is represented by a line beginning at 
a point corresponding to the KS-S:(KSJ-combination, and ending at a 

point corresponding to the S~KS-S:(S~KS,b)-comhination. This line sepa- 

rates the regions corresponding to the SLR-KS-S:- and SiS-KS-S:-combi- 
nations. 

On the line separating the regions that correspond to the SiR-KS-S:- 
and S+BTKSS:-combinations (shown dashed in Fig. 9), the intensity of 

the St-wave going to the 
right'is constant; the In- 
tensity of the S:-, R- 
and S-waves varies. 

On the line separating 
the SZR-KR-S:- and 

Stp-KR-Sz-combinations 
(also shown dashed in Fig. 
9), the intensity of the 
Si- end Sz-waves is con- 

stant, whereas the intens- 
ity of the R--wave varies. 

In the case discussed 
in paragraph 4, just as in 

the case discussed in paragraph 2, combinations involving a non-evoltion- 
ary Sg-wave: KS, etc., are eliminated. 

5. Consider Pa' < 1, P, = 1. In this case the diagram in the huhv 

plane is easily obtained from Fig. 9. lhus the S:KS-q-line disappears, 
because no S:-wave can go out from the point P, in the Ph plane. A part 
of the other line of Fig, 9, which corresponds to the SLR-KS:-combina- 
tion, also disappears. There remains the SLR-KS:-line, separating the 

SP-KRSL- and SF-KS-St-regions, and the dashed line separating the 

Sp-KR*S:- and S (the vacuum line is definitely pre- 
sent in all cases 

6 Consider P, = 1, P,' = 1. From two shock or self-similar waves it 
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is possible to form the RgKR-- and S K S -combinations, where thi R - 

and Sg-waves appearing there&! have e&aig;ntensity . To these comb&- 

tions correspond points on the Au axis. Between the Au axis and the 

vacuum line is found a region that corresponds to the S 

nation. The S+ 
2 

-KR-$-combi- 

g- and R--wave appearing therein also have equal intensity. 

Thus it is shown that depending upon the values of PO and P,’ six 

different diagrams are possible in the AuAv plane. To solve the prob- 

lem of the resolution of a discontinuity it is necessary, knowing pO, 

PO’, Hz and y, to form P, and P,’ and thus select the type of diagram. 

To construct the diagram it is also necessary to know p,, and p,,‘. After 

this, knowing Au and Au at the discontinuity, we ascertain by which 

combination the initial discontinuity is resolved. 

The problem considered in [8] is a special case of the problem in- 

vestigated in the present work, and is easily obtained from it when 

P, = PO’, Au = uO - ~1,~’ = 0, PO = PO’ 

Indeed, it is not difficult to see that with such conditions on the 

initial parameters the discontinuity may be resolved into either an 

SiR-KR-S+B- or an SZR-KR-S:-combination. 

Diagrams for the case of resolution of a discontinuity when the field 

is normal to the discontinuity on one side and arbitrary on the other 

are nearly equivalent to the diagrams obtained by consideration of the 

general case of resolution [5,61, except that the magnetohydrodynamic 

waves going to the side of the normal field are to be replaced by, gas- 

dynamic waves of the same type. 

Moreover, the combination R’ KRt (Rt KR+) may arise, which is not 

generally speaking possible ingthe arbitraty case. 

‘Ihe results obtained have application in astrophysics to the collision 

of cosmic masses, in magnetohydrodynamics to the investigation of the 

interaction of magnetohydrodynamic waves, the splitting of non-evoi\ltion- 

ary waves, etc. 
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