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The problem is considered of the resolution of a discontinuity in mag-
netohydrodynamics with a magnetic field perpendicular to the plane of

the discontinuity. The parameters of the medium on both sides of the dis-
continuity are arbitrary. Altogether twenty different cases of resolu-
tion are possible. This paper shows which of the possible cases of resolu-
tion, can be realized as a function of the values of the initial para-
meters of the medium.

The resolutior of an arbitrary discontinuity in gasdynamics was con-
sidered in [1-4]. The resolution of an arbitrary discontinuity in
magnetohydrodynamics without limitation on the parameters of the medium
and the magnetic field was considered in {5-7]. Certain gpecial cases of
the problem were investigated in [8-13].

The present paper investigates the case of resolution of an arbitrary
discontinuity in magnetohydrodynamics when the magnetic field is normal
to the plane of the discontinuity, but the remaining quantities on both
sides of the discontinuity are arbitrary. It is very complicated to ob-~
tain the solution of this problem as a limiting case of the problem of
the resolution of a discontinuity in an arbitrary field as the tangential
components of the magnetic field on both sides of the discontinuity tend
to zero. The difficulty of such a limiting process is clearly evident
even in the solution of the piston problem in magnetohydrodynamics [14],
where for the tangential component of the magnetic field in the undis-
turbed medium to vanish, three limiting cases are possible, depending
upon the value of P= 4rmy P/Hx2 in the undisturbed medium [15].

The problem of resolution is established in the following form. At
the instant ¢t = 0 let the thermodynamic parameters of the medium, the
velocity, and the normal magnetic field undergo a discontinuity across
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the plane x = 0. Because the conservation laws are not satisfied at such
a discontinuity, it will be resolved into some combination of waves. On
each side two waves may go out, separated by contact discontinuities.
There will be no vorticity discontinuities. Por a vorticity discontinuity
can exist only behind a shock wave that switches on the field. But this
is impossible, because the speed of propagation of such a wave with re-
spect to the gas behind it is just equal to the Alfven speed calculated
from the parameters behind the wave.

If it is supposed that every possible wave may exist, then altogether
twenty different cases of resolution of a discontinuity are possible, de-
pending upon the properties of the medium on the left and right of the
discontinuity. The purpose of the investigation is to determine methods
for indicating which of the possible types of resolution exists in each
concrete case. The present paper proposes a method of solving this prob-
lem, which consists in the construction of a diagram in the plane of
Au = 3y uo’ and Av = v, - vo' by means of which, knowing Au and Av, it
is possible to determine the combination of waves by which an initial
discontinuity will be resolved.

The medium is assumed ideally conducting. It is also assumed that the
solution of the problem under consideration is unique.

Parameters of the medium to the left (right) of the initial discon-
tinuity at ¢ = 0 will be denoted by the index 0(0”). Parameters of the
medium to the right of the contact discontinuity for ¢ > 0 will be
written with a prime.

The symbols S+, s, R+, R, K will indicate respectively the fast and

slow shock wave, fast and slow expansion waves, and contact discontinuity.
The subscript g indicates that the wave is a gasdynamic one; the index w
denotes a shock wave that switches on the tangential component of the
magnetic field.

Depending upon the values of the quantities Po and Po’ there may be
six cases.

1. Consider P, > 1, P, > 1. In the Ph plane the components 0, 0°
correspond to the points Py, P,* of the axis of abscissae in Fig. 1.

.
In [5] it was shown that to combinations consisting of two shock or
self-similar waves and a contact discontinuity there corresponds a point
in the plane of Au= u, ~ u,” and Av = v, — v,°; to combinations con-
sisting of three shock or self-similar waves and a contact discontinuity
there correspond lines in the AuAv plane, these being the boundaries
of regions that correspond to combinations consisting of four shock or
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self-similar waves and a contact discontinuity,
The relations satisfied on a contact discontinuity are [16]

(pl =0, [HI=0, [b]=0

From the first equality it follows that in moving along those lines
out of the points Pj, P’ which correspond to the relationships between
P and h appropriate to S*-, S™-, R*-, and R -waves, into which the
original discontinuity is resolved, it is possible to arrive at one and
the same point in the Ph plane. Henceforth, by studying along which lines
out of the points Py, Py” it is possible to arrive at the same point in
the Ph plane, we find out by which combinations it is possible to resolve
the original discontinuity. Then a diagram is constructed in the AuA v
plane by means of which, it is pessible to determine the combination of
waves into which the original discontinuity is resolved. The diagram cor-
responding to case 1 1s constructed in Fig. 2.

hi
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Fig. 2.

In Fig. 1 it is evident that from two shock or self-similar waves
and a contact discontinuity it is possible to form REKIRS(R;R_I(R;B;)-,
R+I(S*-, and S*KS*-combinations. Furthermore, in the case unger con-
sideration the discontinuity may be resolved into one S;-wave going to
the right and a contact discontinuity, or into one R:-wave going to the
left and a contact discontinuity. All these cembinations are represented
by corresponding points on the Au axis in the AuAv plane, because in
Sg- and R -waves Av = 0. Making the assumption of uniqueness of the
solution, 1t is possible to assert that resolution into each of these
combinations can be achieved if the Au and Av of the discontinuity fall
on these points of the AuAv plane.

Henceforth, instead of '"the region (line, point) that corresponds to
the RBR"KR™SE (RKR'S§, RTKS§)- combination," we will write "the
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R;H‘I(B'S; (R"I(R'S;, R—I(S;)—region (line, point)," and so on.

We consider combinations of three shock or self-similar waves and a
contact discontinuity. An S®-wave may go to the right (from Py” to Py in
Fig. 1), behind which follows an R -wave that switches on the field; an
R -wave goes to the left, of the same intensity as that to the right. As
a result we have the R KR S*-combination. In the Ph plane R -waves are
represented by R™-lines going out of the point P;. This combination of
three waves corresponds in the AuAv plane to a line going out of the
point that corresponds to the KS'-combination. Moving along this line
the intensity of the S*-wave is constant, but the intensity of the R -
wave changes from zero (point KS') to a maximum (the point of the vacuum
line, indicated by cross-hatching in Fig. 2).

Another combination of three shocks: an R'-wave
goes to the left (from point P to point P,”, Fig.
1), behind which follows an R -wave, separated by
a contact discontinuity from an R -wave of the
same intensity propagating to the right. This
B;R—I(R—-combination corresponds in the AuAv plane
to a line going out of the point R*K (at which
point the intensity of the R -wave is equal to
g zero) and proceeding to the vacuum line.

-

-

Fig. 3. Points of the vacuum line, and also points ly-
ing to the left of the vacuum line, correspond to
cases of resolution of an arbitrary discontinuity

into a combination of waves including an R -wave of maximum intensity,
after whose passage a vacuum is formed.

The line R-I(R_S; separates the regions corresponding to the
S+R—KB_S;- and H;R_KR-S;-combinations. The line R'R” KR~ separates the
regions corresponding to the R;R—I(R—S;- and B;R_I(R_R;-combinations.

The figures in the AuAv plane are symmetric with respect to the Au

axis, which follows from the vanishing of the tangential components.of
the magnetic field ahead of the S;, B;- and R -waves.

For definiteness we show in the example of the line corresponding to
the R'R” KR -combination how the equation of the line in the AuAv plane
can be written down.

Thus let the resolution be accomplished by the R'R” KR -combination.
The resolution scheme is depicted in Fig. 3. From Equations (1.4), (1.5),
(2.2), and (2.3) of [5] it follows that
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Up = Uy + A= U+ Yy T A=W =8 — %
vo=v1 kY =Y = =v TP

Hence

Bu=—y, —x—% Av="Tp_F¥-

These equations describe the line corresponding to the R'R™ KR -com-
bination. Moving along this line x, is constant, but the quantities x_,
x_, ¥_ and ¢ * change from zero to certain maximum values. The equations
of the other lines, including the vacuum line, are found analogously.
(See also [5] in this connection.)

2. Consider Py > 1, P,” = 1. In this case the diagram in the AuAvy
plane is easily obtained from Fig. 2.

The RTR" KR -line disappears (it coincides with a portion of the Au
axis), because an R -wave propagating into gas where P<1 and h = 0 de-
generates into an R}wave,‘ which cor-
responds in the Ph plane [15] to the A}
segment of the P axis from P =1 to
P = 0; in such a wave the quantity Av
is equal to zero. There remains one
R KR_S;-line, separating the
R';R" KRS*- and S;R' KR's’;-regions,
and exr.enging from the Au axis to the —
vacuum line.

3. Consider P, > 1, P,” <1 (Figs.
4 and 6 for the Ph plane and Figs. 5
and 7 for the AuAv plane). Now an R -wave cannot be propagated to the
right, because P;” < 1 and h,” = 0, but an S* shock wave can be propa-
gated, which turns on the tangential component of the magnetic field (s,
15,17]. The relation between P and h in an S:-wave is given by the equa-
tion (8]

hz::Zn(i—rz_—in—Po), ﬂz%{[i"}' 2(7;1) P;ozpo]

Fig. 4.

1
LY
4

and is depicted in Figs. 4 and 6. Here P, is the value of P on the S:—
wave for which H, behind it is equal to zero.

It can be shown that
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An R -wave can be propagated to the left.

a) Consider for definiteness Py < P;. Then from two shock and self-
similar waves it is possible
to form the R"KS}-, KS7S!-,
+ 1 ot

SgKSg-, RgKRg-, and RgKSK-
combinations of Fig. 4.

Here the symbols Ss and R
without the + or - sign
always indicate gasdynamic
shock waves and rarefaction
] N_4y waves which may, generally
RKE, RiRK  RKSSLE KS'Sy, Sg K5, speaking, be either fast or

slow. The last four combina-
tions correspond to portions
of the Au axis. This fact is
obvious for the last three
combinations. We show that it is true fa the KS_S:-combination.

8

Fig. 5.

Thus for such a combination [5]

Av=+4¢/Fo'
In this combination the S -wave has maximum intensity, that is H_ = 0
behind it; consequently from (2.2) of [5] ,
o= m'Vy
but behind the S}-wave, switching on the field

q)+, — h1,V1’
Therefore Av = 0 for the KS—S:-combination.

From points of the AuAv plane that represent the B-KS:-combination
may come lines corresponding to the following combinations, consisting
of three shock or self-similar waves and a contact surface (Fig. 5).

1. The R KR™S!-combination. The line corresponding to it ends on the
vacuum line, where in the Ph plane the R -line coming out of the point
P, intersects the h; axis.

2. The R—KS_S:-combination. The line corresponding to it ends on the
Au axis at the point corresponding to the KS*S. (KS 8)-combinat.ion.
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Here the intensity of the R -wave is equal to zero, and the S -~line be-
ginning at the S;-line goes to the point Pj.

h 3. The R'R™KS!-combination. In
the Ph plane the line corresponding
to the R'-wave is the section of the
straight line coinciding with the P
axis to the left from the point P,
to P = 1. At points of this segment
R -lines can begin, going to inter-
> section with the S'-lines. The
smaller P is ahead of the R -wave,
the smaller are H_and Av in the
wave. An R -line corresponding to
an R -wave propagating into gas with
P <1 and h = 0 degenerates into the portion of the P axis from P = 1 to
P = 0. An R'-wave behind which P becomes less than unity goes continuous-
ly into an R;-wave (15].

A line corresponding to an R'R™K S*-combination ends at a point lying
on the Au axis that corresponds to an R;B_K-combination.

4. The S+R_KS:-combination. The line corresponding to it ends at a
point lying on the Au axis that corresponds to an S+KS;-combination.
Moving along this line the intensity of the R -wave gecreases to zero,

We note that to a point of the Au axis that corresponds to a KS_S:-
combination there corresponds also a KS _-combination, and to the
portion of the Au axis that represents an SJ;KS—S:-combination there
corresponds also an S;KSg-combination.

From the point S;KS; goes out a line (shown dashed in Fig. 5) that

separates the S;B-KR-S:- and S'R"KRS'-regions. We note that P > P,
behind the S;-wave moving to the left tﬁat enters into the last combina-
tion.

In the case under consideration (H_,” = 0, Py” < 1), to the left may
go a non-evolutionary Sg-wave or an R_S;-combination including a non-

evolutionary Sg-wave [18,19] (cf. also [15}), behind which P < P,; this
leads to non-uniqueness in the AuAv plane: in this case to one and the
same point AuAv may-correspond two combinations, for example:

+o- 1 amot +o- et ot v oot + . ~ct

RgB KS'S_ and Bgﬂ KR Sg, SgKS S, and SgKSg, KS'S, andKSg.

However, this indeterminacy is easily eliminated. Thus for arbitrarily
small H_,” # 0 there cannot be an Sg-wave going to the right, and
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consequently there cannot be a combination containing a non-evolutionary
Sg-wave that spoils the determinacy.

b) P, > P, (Fig. 6 for the Ph plane, Fig. 7 for the AuAv plane).

In this case there cannot be an R'!(S:-combination. From three shock
or self-similar wave and a contact discontinuity can be formed the
RRTKS,- and RTKR'S}-
combinations (Fig. 6).

The first combination cor-
responds in the AuAv
plane to a line going
from the point RgK to the

point R;I(S; and separat-
ing the R;B'KR‘S:- and
R'R”KS'S! -regions; the
second to a line going

from the point KS' and
separating the R+B”I(R_S;-

and s*R‘ K B‘S"-regions.

In Fig. 7 the line separating the Rt B KR~ S+- and RgR KR'S! ,-regions
is shown dashed.

On this line the intensity of the S'- and S'-waves is constant, and
the intensities of the R -waves are equal and vary from 0 to a certain
finite value.

4. Consider Py < 1, P;” < 1 and, as before, P, > Py (Fig. 8 for the
Ph plane and Fig. 9 for the AuAv
plane).

We consider the case when the S+-
line going out of the point P, does
P not intersect the S' -line g01ng out
of point P,”. The following combina-
Fig. 8. tions of three shock or self-similar
waves and a contact discontinuity
are possible, which correspond to a

line in the AuAv plane.

1. The S:H'I(S:-combination It corresponds to a line beginning at a
point on the Au axis which represents an R'K- combination. Thls llne
goes over continuously into the line corresponding to the st I(S - com-~
bination. In the Ph plane the R -line, corresponding to the " _wave
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appearing in this combination, does not then end on the S:—line but on
the Sg-line. The S;R"KS: -line ends at a point corresponding to the

S K Sy -combination. The SJR"KS-line separates the SR KK'S,- and
S:R" KS™ S:—regions; the S;R’KS:«line separates the S‘;B'KB"S:- and
S*R" KS S+-regions.

2. The S+KS S*-combmatlon It is represented by a line beginning at
a point correspondmg to the KS~ S*(KS )-combmamon and ending at a

point corresponding to the S;KS S:(S';KSE) -combination. This line sepa-

rates the regions corresponding to the S:R‘KS“S:- and S:S—KS‘S:-combi-
nations.

On the line separating the regions that correspond to the S'R™KS~ S+
and S+B KS™ S+ combinations (shown dashed in Fig. 9) the intensity of
the Sg—wave going to the
right is constant t.he in-
tensity of the S -
and S -waves varies.

On the line separating
the S'RTKRS}- and
S*R" KRS} -combinations
{also shown dashed in Fig.
9), the intensity of the
S;- and S:—waves is con-

stant, whereas the intens-
ity of the R -wave varies.

In the case discussed
in paragraph 4, just as in
the case discussed in paragraph 2, combinations involving a non-evoltion-
ary S -wave: KS etc., are eliminated,

5. Consider Py’ < 1, P, = 1. In this case the diagram in the AuAv
plane is easzly obtamed from Fig. 9. Thus the S:KS S: line disappears,
because no S' ,-Wave can go out from the point P, in the Ph plane. A part
of the other line of Fig. 9, which corresponds to the S+B KS*-combma—
tion, also disappears. There remains the S+R KS+-lme separamng the

;R KR S: and S;R KS™ S'-reglons, and the dashed line separating the

"KR'S.- and S “Ka"s;-regions (the vacuum line is definitely pre-
sent in all cases).

6. Consider P, =1, Py’ = 1. From two shock or self-similar waves it
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is possible to form the R KR - and S_KS _-combinations, where the R -
and Sg-waves appearing therein have equal intensity. To these combina-
tions correspond points on the Au axis. Between the Au axis and the
vacuum line is found a region that corresponds to the SYR™KR™S*-combi-
nation. The S;- and R -wave appearing therein also have equal intensity.

Thus it is shown that depending upon the values of P, and P,” six
different diagrams are possible in the AuAv plane. To solve the prob-
lem of the resolution of a discontinuity it is necessary, knowing p,
Py’ H, andy, to form Py and P,” and thus select the type of diagram.
To construct the diagram it is also necessary to know p, and p,”. After
this, knowing Au and Av at the discontinuity, we ascertain by which
combination the initial discontinuity is resolved.

The problem considered in [8] is a special case of the problem in-
vestigated in the present work, and is easily obtained from it when
Py= Py, Au =u,—uy, =0, Po = po’

Indeed, it is not difficult to see that with such conditions on the

initial parameters the discontinuity may be resolved into either an
SgR KRS~ or an S,R KRS, -combination.

Diagrams for the case of resolution of a discontinuity when the field
is normal to the discontinuity on one side and arbitrary on the other
are nearly equivalent to the diagrams obtained by consideration of the
general case of resolution [5,6], except that the magnetohydrodynamic
waves going to the side of the normal field are to be replaced by gas-
dynamic waves of the same type.

Moreover, the combination R* KR* (R*KR') may arise, which is not
generally speaking possible in the arbitrary case.

The results obtained have application in astrophysics to the collision
of cosmic masses, in magnetohydrodynamics to the investigation of the
interaction of magnetohydrodynamic waves, the splitting of non-evolution-
ary waves, etc.
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